Halide Torch Leak Detection

Halide Leak Detector

The use of a halide leak detector (see illustration below) is the most positive method of detecting leaks in a refrigerant system using halogen refrigerants (R-12, R-22, R-11, R-502, etc.). Such a detector consists essentially of a torch burner, a copper reactor plate, and a rubber exploring hose.  

Detectors use acetylene gas, alcohol, or propane as a fuel. A pump supplies the pressure for a detector that uses alcohol. If a pump-pressure type of alcohol-burning detector is used, be sure that the air pumped into the fuel tank is pure.

An atmosphere suspected of containing a halogen vapor is drawn through the rubber exploring hose into the torch burner of the detector. Here the air passes over the copper reactor plate, which is heated to incandescence. If there is a minute trace of a halogen refrigerant present, the color of the torch flame changes from blue (neutral) to green as the halogen refrigerant contacts the reactor plate. The shade of green depends upon the amount of halogen refrigerant; a pale green color shows a small concentration and a darker green color, a heavier concentration. Too much of a halogen refrigerant causes the flame to burn with a vivid purple color. Extreme concentrations of a halogen refrigerant may extinguish the flame by crowding out the oxygen available from the air.

Read the Rest of this Article: http://hvacprotech.forumwise.com/hvacprotech-thread5175.html

About these ads

2 Responses to “Halide Torch Leak Detection”

  1. Jerry I personally recommend TRUTech Tools http://www.trutechtools.com/ They offer unparalleled service and support and have an in depth knowledge of the trade from a technical aspect. Let us know what you decided on.

  2. Jerry Swinney Says:

    I want to purchase A Halide Leak Detector.Where will I find one?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: